

Norwood Primary School

 Calculation Policy - Mastery Approach| Ratified By | Curriculum Committee |
| :---: | :---: |
| Date | 08/02/2021 |
| Minute | 10 |
| Review Date | Spring 2024 |
| Policy Statement | |
| What is the policy for? | A framework for teaching of Calculation across the school |
| Who has devised and contributed to this policy? | The policy has been written by the subject leader and staff in school have been fully consulted |
| How will this policy be communicated? | Website and 365 |
| How will this policy be monitored? | As outlined in the policy |
| Which other policies are linked to this policy? | Maths
 EYFS policy
 Feedback and Assessment Policy
 SEN policy
 Homework Policy
 Acceptable Use |

	NORMOOD PRIMARY SCHOOL					
	Progression in the use of concrete resources to support mearning useli					
Foundation	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Real-life objects						
0-9 digit cards						
Number track to 10	Number line to 20	Number line to 100	Number line to 100	Number line including negative numbers	Number line including negative numbers	Number line including negative numbers
Numbered counting stick	Counting stick					
Tens frame	Tens frame	Tens frame				
	Place value charts Tens and ones	Place value charts Hundreds, tens and ones	Place value charts Thousands, hundreds, tens and ones	Place value charts - Ten thousands, thousands, hundreds, tens, ones and tenths	Place value charts to a million and three decimal places	Place value charts to 10 million and three decimal places
Interlocking cubes - Use one colour to represent one amount	Interlocking cubes Use one colour to represent one amount	Dienes	Dienes	Dienes	Dienes	Dienes
			Place value counters	Place value counters	Place value counters	Place value counters
	Place value arrow cards - tens and ones	Place value arrow cards - tens and ones	Place value arrow cards - H, T, O	Place value arrow cards - Th, H, T, O	Place value arrow cards	Place value arrow cards
Part-part-whole mat	Part-part-whole mat	Part-part-whole mat	Part-part-whole model	Part-part-whole model	Part-part-whole model	Part-part-whole model
Bar model with reallife objects	Bar model with real life objects/pictorial objects/representative objects eg. counters	Bar model with counters /Dienes progressing to numbers	Bar model with numbers			
Bead strings - ten	Bead strings - twenty	Bead strings - hundred				
Numicon shapes						
			Cuisenaire rods	Cuisenaire rods	Cuisenaire rods	Cuisenaire rods
Double sided coun	ters Double sided counte	Double sided counter	Double sided counters	Double sided counters	uble sided counters Do	le sided counters
Multilink - use one colour to model an amount	Multilink - use one colour to model an amount	Multilink - use one colour to model an amount	Multilink - use one colour to model an amount	Multilink - use one colour to model an amount	Multilink - use one colour to model an amount	Multilink - use one colour to model an amount

	NORWOOD PRIMARY SCHOOL	
\Rightarrow	DISPLAY IT!	
Build it!	Use a real-life representation of the concept which children can see, touch and feel.	
Draw it!	Show a pictorial representation of the concept.	
Solve it!	Show the mathematical representation of the concept.	$\begin{aligned} & 6 \times 2=12 \\ & 2 \times 6=12 \\ & 12 \div 2=6 \\ & 12 \div 6=2 \end{aligned}$ Factors of 12 are: 1, 2, 3, 4, 6 and 12
Practise it!	Encourage children to practice the concept. Interactive opportunity - ask children to respond to questions, encourage them to add what they know, leave homework for children to take to master the concept.	$\begin{aligned} & 1 \times 2=2 \\ & 2 \times 2=4 \\ & 3 \times 2=6 \text { etc. } \end{aligned}$
Challenge it!	Set a challenge to be solved. Interactive opportunity - leave real-life objects or manipulatives for children to use to help solve the challenge.	How many different ways can 12 eggs be arranged into arrays? What if you try 24 eggs?
Say it!	Use vocabulary related to the concept	Multiply, times, repeated addition, array, divide, group, multiples, factors

NORWOOD PRIMARY SCHOOL			
	Progression in counting in the Foundation Stage		
Pre-counting The key focus in pre-counting is an understanding of the concepts more, less and the same and an appreciation of how these are related. Children at this stage develop these concepts by comparison and no counting is involved.	Ordering Count by reciting the number names in order forwards and backwards from any starting point.	One to one correspondence One number word has to be matched to each and every object. Lack of coordination is a source of potential error - it helps if children move the objects as they count, use large rhythmic movements, or clap as they count.	Cardinality (Knowing the final number counted is the total number of objects) Count out a number of objects from a larger collection. Know the number they stop counting at will give the total number of objects.
Pre-counting ideas Provide children with opportunities to sort groups of objects explicitly using the language of more and less. Which group of apples has the most? Which group of apples has the least?	Ordering ideas Provide children with opportunities to count orally on a daily basis. Rote count so that children are able to understand number order and can hear the rhythm and pattern. Use a drum or clap to keep the beat.	One to one correspondence ideas Play counting games together moving along a track, play games involving amounts such as knocking down skittles. Use traditional counting songs throughout the day ensuring children have the visual/kinaesthetic resources eg. 5 little ducks, 10 green bottles	Cardinal counting ideas How many bananas are in my fruit bowl? Allow children to physically handle the fruit. Provide children with objects to point to and move as they count and say the numbers.

NORWOOD PRIMARY SCHOOL

Progression in the teaching of counting in the Foundation Stage

Subitising (recognise small numbers

 without counting them)Children need to recognise small amounts without counting them eg. dot patterns on dice, dots on tens frames, dominoes and playing cards as well as small groups of randomly arranged shapes stuck on cards.

Abstraction

You can count anything - visible objects, hidden objects, imaginary objects, sounds etc. Children find it harder to count things they cannot move (because the objects are fixed), touch (they are at a distance), see, that move around. Children also find it difficult to count a mix of different objects, or similar objects of very different sizes.

Conservation of number - MASTERY!

Ultimately children need to realise that when objects are rearranged the number of them stays the same.

Subitising ideas

Provide children with opportunities to count by recognising amounts.

Abstraction ideas

How many pigs are in this picture?

Provide children with a variety of objects to count.

Conservation of Number

* The amount is "seven" and doesn't change.

TENS FRAME IDEAS

LIFE SIZE TEN FRAME	Create a life-size ten frame in the classroom and outdoor play area. Use counters, pennies, teddies, gingerbread men, children etc.
FLASH	Flash ten frame briefly and have children write the number on a whiteboard. Using whiteboards, rather than having children say the number, ensures that all children attempt to respond and allows the teacher to assess class progress. When the response is oral, not all child responses are audible. Encourage children to share the different strategies used to find the total number of dots for cards, "How did you see it?" This can be varied by asking children to write the number and draw the pattern they saw, or by having them build the number flashed on their own blank frame.
FLASH: ONE MORE	Once children are familiar with the basic patterns, and know them automatically, flash a 10 frame or dot card and ask them to name the number that is one more than the number flashed. Variation: ask children to give the number that is two more/one less/double/ten more than the number flashed.
I WISH I HAD TEN	Flash a dot card or ten frame showing 9 or less and say, "I wish I had 10 ". Children respond with the part that is needed to make ten. The game can focus on a single whole, or the "wish I had" number can change each time. Variation: teacher flashes card and children write the complement of ten on individual whiteboards with dry erase markers.
I WISH I HAD 12	As above but children respond with how many more are needed to make twelve. Children should be confident in facts of 10 before this is attempted. For example to go from 8 to 12 , they should realise they need 2 more to get to 10 , then 2 more to 12.2 and 2 is 4 . Variation: Children draw an empty number line on their whiteboards to show the two jumps used to get to the target number.
1 MORE 1 LESS 10 MORE 10 LESS	The following four prompts are written on the board: one more one less ten more ten less The teacher flashes a dot or ten frame card as the 'starting number'. The first child selects one prompt. For example, if the teacher flashes a card showing ' 5 ' the first child might say, "one more than 5 is 6 ", the second child might say, "ten more than 6 is 16 ", and the third child might say, "one less than 16 is 15 ". Continue until all children have had a turn.
TEEN FRAME FLASH (11-20)	Teen Frame Flash (11-20) Once children are subitizing ten frame patterns 0-10, cards showing larger numbers (i.e. more than one ten frame) should be introduced. Use mental math sessions with the following key questions: How many? How many more than 10 ? As children become familiar with the 'teen' patterns introduce further questions to develop number relationships. What is one more/two more than the number I flashed? What is one less/two less than the number I flashed? How far away is the number I flashed from twenty? Double the number I flash. What is the near Doubles fact? (i.e., if 15 is flashed, children answer 7+8)
MULTIPLES	Flash a tens frame and ask children to give you the product if the number you flash was multiplied by 2,5 etc.

	NORWOOD PRIMARY SCHOOL					
	Progression in teaching of calculation					
	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Addition	Combining two parts to make a whole: part whole model. Starting at the bigger number and counting on. Regrouping to make 10.	Adding three single digits. Column method two 2 digit - no regrouping. Adding 1s to a 2 digit number. Adding 10s to a 2 digit number	Column methodregrouping. (up to 3 digits)	Column methodregrouping. (up to 4 digits)	Column methodregrouping. (with more than 4 digits) (Decimals- with the same amount of decimal places)	Column methodregrouping. (Decimalswith different amounts of decimal places)
Subtraction	Taking away ones Counting back Find the difference Part whole model Make 10	Counting back Find the difference Part whole model Make 10 Column method-no regrouping	Column method with regrouping. (up to 3 digits)	Column method with regrouping. (up to 4 digits)	Column method with regrouping. (with more than 4 digits) (Decimals- with the same amount of decimal places)	Column method with regrouping. (Decimalswith different amounts of decimal places)
Multiplication	Doubling Counting in multiples Arrays (with support)	Doubling Counting in multiples Repeated addition Arrays- showing commutative multiplication	Counting in multiples Repeated addition Arrays- showing commutative multiplication Grid method	Column multiplication (2 and 3 digit multiplied by 1 digit)	Column multiplication (up to 4 digit numbers multiplied by 1 or 2 digits)	Column multiplication (multi digit up to 4 digits by a 2 digit number)
Division	Sharing objects into groups Division as grouping	Division as grouping Division within arrays	Division within arrays Division with a remainder Short division (2 digits by 1 digit- concrete and pictorial)	Division within arrays Division with a remainder Short division (up to 3 digits by 1 digitconcrete and pictorial)	Short division (up to 4 digits by a 1 digit number interpret remainders appropriately for the context)	Short division Long division (up to 4 digits by a 2 digit number- interpret remainders as whole numbers, fractions or round)

NomoodSchool ${ }_{\text {a }}$ NORWOOD PRIMARYSCHOOL			
Progression in teaching of calculation - SUBTRACTIT			
Objective and strategies	Concrete BUILD IT/USE IT!	Pictorial DRAW IT!	Abstract SOLVE IT!
Taking away ones	Use real-life physical objects, counters, cubes etc. to show how objects can be taken away. $6-2=4$	Cross out drawn objects to show what has been taken away. $5-2=3$	$\begin{aligned} & 4=6-2 \\ & 18-3=15 \\ & 8-2=6 \end{aligned}$
Counting back	Make the larger number in the subtraction calculation. Move the beads along the bead string whilst counting backwards in ones.	Count back on a number line or number track Start at the bigger number and count back the smaller number showing the jumps on the number line.	Put 13 in your head, count back 4. What number are you at? Use your fingers to help.

Make the larger number with the Dienes or place value counters. Start with the ones, can I take away 8 from 4 easily? I need to exchange one of my tens for ten ones.

Now I can subtract my ones.

s, can I take away 8 tens easily? I need to exchange one hundred for ten tens.

Now I can take away eight tens and complete my subtraction

Show children how the concrete method links to the written method alongside your working. Cross out the numbers when exchanging and show where we write our new amount.

Draw the counters onto a place value grid and show what has been taken away by crossing the counters out as well as clearly showing the exchanges made.

When confident, children can find their own way to record the exchange/regrouping.

Children can start their formal written method by partitioning the number into clear place value columns.
$728-582=146$

5	8

146

Moving forward the children use a more compact method.

This will lead to an understanding of subtracting any number including decimals.

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Nowoodschol \({ }^{\text {cos }}\) (NORWOOD PRIMARYSCHOOL} \\
\hline \multicolumn{4}{|l|}{Progression in teaching of calculation - MULTIPLYIT} \\
\hline Objective and strategies \& Concrete BUILD IT/USE IT! \& Pictorial DRAW IT! \& Abstract SOLVE IT! \\
\hline \begin{tabular}{l}
Doubling \\
Double five is ten.
\end{tabular} \& Use practical activities to show how to double a number.
\[
5 \times 2=10
\] \& \begin{tabular}{l}
Draw pictures to show how to double a number. \\
Double 4 is 8
\(\square\)

\square
\square
\square
\square
\end{tabular} \&

\hline Counting in multiples \& Count in multiples supported by concrete objects in equal groups. \& Use a number line or pictures to continue support in counting in multiples. \& | Count in multiples of a number aloud. |
| :--- |
| Write sequences with multiples of numbers. |
| $2,4,6,8,10$ |
| $5,10,15,20,25,30$ |

\hline
\end{tabular}

Repeated addition	Use different objects to add equal groups.	There are 3 plates. Each plate has 2 star biscuits on. How-many biscuits are there? 2 add 2 add 2 equals 6 $5+5+5=15$	Write addition sentences to describe objects and pictures.
Arrays- showing commutative multiplication	Create arrays using counters/ cubes to show multiplication sentences.	Draw arrays in different rotations to find commutative multiplication sentences. Link arrays to area of rectangles.	Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$

Show the link with arrays to first introduce the grid method.

4 rows

of 104
rows
of 3

Use Dienes to move towards a more compact method.

Use place value counters to show finding groups of a number eg. multiplying by 4 so we need 4 rows.

Fill each row with 126.

Add up each column, starting with the ones making any exchanges needed.

Children can represent the work they have done with place value counters in a way that they understand.

They can draw the counters, using colours to show different amounts or just use circles in the different columns to show their thinking as shown below.

Start with multiplying by one digit numbers and showing the clear addition alongside the grid.

x	30	5
7	210	35

$\mathbf{2 1 0}+\mathbf{3 5}=\mathbf{2 4 5}$

Moving forward, multiply by a 2 digit number showing the different rows within the grid method.

10	8
10	100
30	80
	30

X	$\mathbf{1 0 0 0}$	$\mathbf{3 0 0}$	$\mathbf{4 0}$	$\mathbf{2}$
$\mathbf{1 0}$	10000	3000	400	20
8	8000	2400	320	16

Division within
arrays

Progression in teaching of calculation - SUBTRACT IT

Times Tables are at the heart of mental arithmetic, which in itself helps form the basis of a child's understanding and ability when working with number. Once the children have learnt their times tables by heart, they are then able to work far more confidently and efficiently through a wide range of more advanced calculations. At Whitehill Primary School, we believe that through a variety of interactive, visual, engaging and rote learning techniques, most children can achieve the full times table knowledge by the time they enter Year 5.

Reception	Year 1	Year 2	Year 3	Year 4	Year 5 and 6
I can count in steps of 1 I can count in steps of 2 I can count in steps of 10 I can count in steps of 5	I can count in steps of 5 I know my 1 times table I know my 2 times table I know my 10 times table	I know my 5 times table I know my 3 times table I know my 4 times table	I know my 6 times table I know my 7 times table I know my 11 times table	I know my 9 times table I know my 8 times table I know my 12 times table	Regular consolidation of all times tables

Rote learning

Times tables will be recited daily. Chant as: 'One times two is two, two times two is four, three times two is six'

Also chant as 'one multiplied by two is two, once two is two, one lot of two is two, one group of two is two, the product of one and two is two etc.'

$1 \times 1=1$	$2 \times 1=2$	$3 \times 1=3$	$4 \times 1=4$	$5 \times 1=5$
$1 \times 2=2$	$2 \times 2=4$	$3 \times 2=6$	$4 \times 2=8$	$5 \times 2=10$
$1 \times 3=3$	$2 \times 3=6$	$3 \times 3=9$	$4 \times 3=12$	$5 \times 3=15$
$1 \times 4=4$	$2 \times 4=8$	$3 \times 4=12$	$4 \times 4=16$	$5 \times 4=20$
$1 \times 5=5$	$2 \times 5=10$	$3 \times 5=15$	$4 \times 5=20$	$5 \times 5=25$
$1 \times 6=6$	$2 \times 6=12$	$3 \times 6=18$	$4 \times 6=24$	$5 \times 6=30$
$1 \times 7=7$	$2 \times 7=14$	$3 \times 7=21$	$4 \times 7=28$	$5 \times 7=35$
$1 \times 8=8$	$2 \times 8=16$	$3 \times 8=24$	$4 \times 8=32$	$5 \times 8=40$
$1 \times 9=9$	$2 \times 9=18$	$3 \times 9=27$	$4 \times 9=36$	$5 \times 9=45$
$1 \times 10=10$	$2 \times 10=20$	$3 \times 10=30$	$4 \times 10=40$	$5 \times 10=50$
$1 \times 11=11$	$2 \times 11=22$	$3 \times 11=33$	$4 \times 11=44$	$5 \times 11=55$
$1 \times 12=12$	$2 \times 12=24$	$3 \times 12=36$	$4 \times 12=48$	$5 \times 12=60$

Display

Times tables should be on display at the front of all classrooms, for children to use as support and reference.
Year 1: 1, 2, 5 and 10 times tables should be displayed.
Year 2: 1, 2, 3, 4, 5 and 10 times tables should be displayed

KS2: All times tables up to 12×12 should be available for children. The display must be large enough for all children to see and on table top resources where necessary. Individual times tables should be displayed.

Homework

Children need to be sent home times table homework on a regular basis. This can be in the form of times table 'challenges', identifying times table patterns, practicing with parents or listening to Times Tables songs on Mathletics.

NORWOOD PRIMARY SCHOOL

NorwoodShool

COUNT IT

Children need to rehearse counting regularly in order that they MASTER the number system.
Remember to count forwards and backwards orally and in written form.
Count from any number.
Ensure pronunciation of numbers is correct.

Counting ladder - draw a ladder. Put starter number in the middle. Count forwards up the ladder and backwards down the ladder.	Chanting	Sposs the parcel (wrap up numbers, predict next number)	
Count in a sequence	Pendulum counting - multilink cube on a string	Speed counting	Mixed sequences eg +10, +1, -2 or missing number sequences
How many beats? Teacher beats wood block. Children count how many times in their head. Record. Each beat could represent an amount.	Action counting	Estimate and count When counting estimated objects, place the objects in rows of 10.	What am I counting in? Teacher counts, children work out rule. Can they then continue the pattern?
Counting stick (attached numbers then remove)	Count to the beat of the drum	Eyes closed counting game -blindfold one child, point to others who stand and say their name. Blindfolded child counts.	Play counting tennis eg count in steps, teacher says 5, children say 10 (mime using racket)
Fizz buzz	Use shapes eg triangles and count number of sides using 3 times table one coins in a pot, drop in one by	Count using constant function on calculator	

Lead the counting into calculation so the children see the link, for example, if counting in twos, calculate using repeated addition, multiplication include inverse operations etc.

DIFFERENT WAYS OF COUNTING
\(\left.\begin{array}{|l|l|l|l|l|}\hline Single steps \& Multiples \& \begin{array}{l}Use a rule

eg 10+1-3\end{array} \& Milliitres/litres \& Centimetres/metres\end{array}\right]\) Decimals | Money |
| :--- |
| Fractions |
| Unams/kilograms of time |

VISUAL AIDS FOR COUNTING				
Number line	100 square	Counting beads	Bead frame	Objects
Number snake	Number tiles	Pocket number line	Real money, large money or magnetic money	Shapes eg count sides
Counting stick	Whiteboards making own visual prompt	Objects (real life)	Base 10 Hundreds, tens, units	Groups of straws
Real life packaging showing arrays eg egg boxes, biscuit packets	Wrapping paper, wall paper etc. to count number of shapes	Number track	Counting bead string	Tape measure or metre stick
Clocks	Measuring jugs	Thermometer	Bead frame/abacus	Calculator
Pictures	Fingers	Interactive whiteboard	Multilink/buttons etc.	Number cards

REHEARSE IT

Rehearsing old skills:
Children need to rehearse skills already taught to lead them to MASTERY.

The objectives will depend on your year group; however, it is important to keep old skills alive.
Remember to present the old skills in a variety of ways eg. Venn diagrams, Carroll diagrams, pictograms, tables, <and>signs, missing information, etc.

REASON IT

There is a huge emphasis on reasoning in maths lessons. Children need opportunities to justify and explain their knowledge.
Ensure you are using:
NCETM reasoning questions
NCETM mastery documents
NRICH tasks

Odd one out	Would you rather have ... ?	Find the mistake.	What is the same and what is different?
True or false?	Here is the answer, explain how it was worked out.	Always, sometimes, never	Give me a silly answer to this problem. What makes it silly?
Tell me about this...	Prove/disprove this statement.	Convince me that ...	What if....?
Give me a hard and easy example of a calculation you could do with these numbers.	What do you notice?	How are these linked?	If you know this fact, what else do you know? Eg. If you know: $4+6=10$ You know:
Give me a hard and easy example of a five-digit calculation.		$40+60=100$ $100-40=60$ The sum of 6 and 4 is 10. $4000+6000=10,000$	
Give me a hard and easy example of a question you could ask about this graph/pie chart etc.		$100,000-60,000=40,000$ If it is $6 o^{\prime \prime c l o c k ~ n o w, ~ i n ~} 4$ hours it will be 10 o'clock.	

RECALL IT

Rapid recalling of key facts is important in developing fluency and MASTERY.
As children recall facts, deepen their knowledge by reasoning in context eg. When recalling number, bonds totalling 100: 'tell me two lengths that together make one metre.'

Recall number bonds	Recall addition / subtraction facts	Recall multiplication / division facts	Recall fraction, decimal, percentage equivalents
Recall shape names and properties	Recall time related facts	Recall measurement facts	

SAY IT

Build mathematical vocabulary into every lesson.
 Encourage children to speak in full sentences when giving responses.

Taboo - describe this word without saying it	How many words can you link to this word?	Match the word and its meaning.	Use a picture. How many mathematical words can you use?
Which of these words is the odd one out?	Write the definition of this word for someone who does not understand what it means.	Which word do these words link to?	Word of the day - use this word as many times in the day as possible (in context of course!)
Can you say a sentence which links these two words?	Tell me everything you can about this word.	Can you draw a picture to explain this word?	Hangman

